Weak isomorphisms between Bernoulli shifts

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak isomorphisms between Bernoulli shifts

In this note, we prove that if G is a countable group that contains a nonabelian free subgroup then every pair of nontrivial Bernoulli shifts over G are weakly isomorphic.

متن کامل

Bernoulli Schemes and Their Isomorphisms

In these lectures I shall present some of the ideas and methods used in the proof of the celebrated theorem stating that two Bernoulli schemes are isomorphic if and only if they have the same entropy. I shall concentrate, because of lack of time, on a well known partial result, Sinai's theorem, which states that two Bernoulli schemes are weakly isomorphic if and only if they have the same entro...

متن کامل

Brooks’ theorem for Bernoulli shifts

If Γ is an infinite group with finite symmetric generating set S, we consider the graph G(Γ, S) on [0, 1]Γ by relating two distinct points if an element of s sends one to the other via the shift action. We show that, aside from the cases Γ = Z and Γ = (Z/2Z) ∗ (Z/2Z), G(Γ, S) satisfies a measure-theoretic version of Brooks’ theorem: there is a G(Γ, S)-invariant conull Borel set B ⊆ [0, 1]Γ and ...

متن کامل

Z Group Shifts and Bernoulli Factors

In this paper, a group shift is an expansive action of Zd on a compact metrizable zero dimensional group by continuous automorphisms. All group shifts factor topologically onto equal-entropy Bernoulli shifts; abelian group shifts factor by continuous group homomorphisms onto canonical equalentropy Bernoulli group shifts; and completely positive entropy abelian group shifts are weakly algebraica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2011

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-011-0043-3